125 research outputs found

    Bar-induced central star formation as revealed by integral field spectroscopy from CALIFA

    Full text link
    We investigate the recent star formation history (SFH) in the inner region of 57 nearly face-on spiral galaxies selected from the Calar Alto Legacy Integral Field Area (CALIFA) survey. For each galaxy we use the integral field spectroscopy from CALIFA to obtain two-dimensional maps and radial profiles of three parameters that are sensitive indicators of the recent SFH: the 4000\AA\ break (Dn_n(4000)), and the equivalent width of HΎ\delta absorption (EW(HΎA\delta_A)) and Hα\alpha emission (EW(Hα\alpha)). We have also performed photometric decomposition of bulge/bar/disk components based on SDSS optical image. We identify a class of 17 "turnover" galaxies whose central region present significant drop in Dn_n(4000), and most of them correspondingly show a central upturn in EW(HΎA\delta_A) and EW(Hα\alpha). This indicates that the central region of the turnover galaxies has experienced star formation in the past 1-2 Gyr, which makes the bulge younger and more star-forming than surrounding regions. We find almost all (15/17) the turnover galaxies are barred, while only half of the barred galaxies in our sample (15/32) are classified as a turnover galaxy. This finding provides strong evidence in support of the theoretical expectation that the bar may drive gas from the disc inward to trigger star formation in galaxy center, an important channel for the growth/rejuvenation of pseudobulges in disc galaxies.Comment: 19 pages, 10 figures, ApJ accepte

    CloudBrain-NMR: An Intelligent Cloud Computing Platform for NMR Spectroscopy Processing, Reconstruction and Analysis

    Full text link
    Nuclear Magnetic Resonance (NMR) spectroscopy has served as a powerful analytical tool for studying molecular structure and dynamics in chemistry and biology. However, the processing of raw data acquired from NMR spectrometers and subsequent quantitative analysis involves various specialized tools, which necessitates comprehensive knowledge in programming and NMR. Particularly, the emerging deep learning tools is hard to be widely used in NMR due to the sophisticated setup of computation. Thus, NMR processing is not an easy task for chemist and biologists. In this work, we present CloudBrain-NMR, an intelligent online cloud computing platform designed for NMR data reading, processing, reconstruction, and quantitative analysis. The platform is conveniently accessed through a web browser, eliminating the need for any program installation on the user side. CloudBrain-NMR uses parallel computing with graphics processing units and central processing units, resulting in significantly shortened computation time. Furthermore, it incorporates state-of-the-art deep learning-based algorithms offering comprehensive functionalities that allow users to complete the entire processing procedure without relying on additional software. This platform has empowered NMR applications with advanced artificial intelligence processing. CloudBrain-NMR is openly accessible for free usage at https://csrc.xmu.edu.cn/CloudBrain.htmlComment: 11 pages, 13 figure

    PE-SERF: A sensitivity-improved experiment to measure J HH in crowded spectra

    Get PDF
    Abstract(#br)Aiming at facilitating the analysis of molecular structure, the gradient-encoded selective refocusing methods (G-SERF) and a great number of its variants for measuring proton-proton coupling constants have been proposed. However, the sensitivity is an issue in the 2D gradient-encoded experiments, because the signal intensity is determined by the slice thickness of the sample that depends on encoding gradient and the bandwidth of selective pulses which is limited by the smallest chemical shift difference of any two coupled protons. Here, we present a method dubbed PE-SERF (perfect echo selective refocusing) which can determine all J HH values involving a selected proton with improved sensitivity compared to original G-SERF experiment. The modules of perfect echo involving selective pulses and gradient-encoded selective refocusing are combined in the method, so that the unwanted J couplings arising from coupled spin pairs in the same sample slice would be nullified. In this way, instead of single proton, a pair of coupled protons is allowed to share a sample slice, and thus the slice thickness can be increased and the spectral sensitivity can be improved. The performance of the method is demonstrated by experiments on quinine and strychnine

    PE-SERF: A sensitivity-improved experiment to measure JHH in crowded spectra.

    Get PDF
    Aiming at facilitating the analysis of molecular structure, the gradient-encoded selective refocusing methods (G-SERF) and a great number of its variants for measuring proton-proton coupling constants have been proposed. However, the sensitivity is an issue in the 2D gradient-encoded experiments, because the signal intensity is determined by the slice thickness of the sample that depends on encoding gradient and the bandwidth of selective pulses which is limited by the smallest chemical shift difference of any two coupled protons. Here, we present a method dubbed PE-SERF (perfect echo selective refocusing) which can determine all JHH values involving a selected proton with improved sensitivity compared to original G-SERF experiment. The modules of perfect echo involving selective pulses and gradient-encoded selective refocusing are combined in the method, so that the unwanted J couplings arising from coupled spin pairs in the same sample slice would be nullified. In this way, instead of single proton, a pair of coupled protons is allowed to share a sample slice, and thus the slice thickness can be increased and the spectral sensitivity can be improved. The performance of the method is demonstrated by experiments on quinine and strychnine

    Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy

    Get PDF
    Acknowledgements: The work was supported by the National Key R&D Program of China (2020YFA0908800), NSFC (81773674, 81573383), Shenzhen Science and Technology Research Grant (JCYJ20190808152019182), Hubei Province Scientific and Technical Innovation Key Project, National Natural Science Foundation of Hubei Province (2017CFA024, 2017CFB711), the Applied Basic Research Program of Wuhan Municipal Bureau of Science and Technology (2019020701011429), Tibet Autonomous Region Science and Technology Plan Project Key Project (XZ201901-GB-11), the Local Development Funds of Science and Technology Department of Tibet (XZ202001YD0028C), Project First-Class Disciplines Development Supported by Chengdu University of Traditional Chinese Medicine (CZYJC1903), Health Commission of Hubei Province Scientific Research Project (WJ2019M177, WJ2019M178), the China Scholarship Council, and the Fundamental Research Funds for the Central Universities.Peer reviewedPublisher PD

    Ultra-high pressure balloon angioplasty for pulmonary artery stenosis in children with congenital heart defects: Short- to mid-term follow-up results from a retrospective cohort in a single tertiary center

    Get PDF
    ObjectiveBalloon angioplasty (BA) has been the treatment of choice for pulmonary artery stenosis (PAS) in children. There remains, however, a significant proportion of resistant lesions. The ultra-high pressure (UHP) balloons might be effective in a subset of these lesions. In this study, we analyzed the safety and efficacy with short- to mid-term follow-up results of UHP BA for PAS in children with congenital heart defects (CHD) in our center.MethodsThis is a retrospective cohort study in a single tertiary heart center. Children diagnosed with PAS associated with CHD were referred for UHP BA. All data with these children were collected for analysis with updated follow-up.ResultsA total of 37 UHP BAs were performed consecutively in 28 children. The success rate was 78.4%. A significantly (P = 0.005) larger ratio of the balloon to the minimal luminal diameter at the stenotic waist (balloon/waist ratio) was present in the success group (median 3.00, 1.64–8.33) compared to that in the failure group (median 1.94, 1.41 ± 4.00). Stepwise logistic regression analysis further identified that the balloon/waist ratio and the presence of therapeutic tears were two independent predictors of procedural success. The receiver operating characteristic curve revealed a cut-off value of 2.57 for the balloon/waist ratio to best differentiate success from failure cases. Signs of therapeutic tears were present in eight cases, all of whom were in the success group. Perioperative acute adverse events were recorded in 16 patients, including 11 pulmonary artery injuries, three pulmonary hemorrhages, and two pulmonary artery aneurysms. During a median follow-up period of 10.4 (0.1–21.0) months, nine cases experienced restenosis at a median time of 40 (4–325) days after angioplasty.ConclusionsThe UHP BA is safe and effective for the primary treatment of PAS in infants and children with CHD. The success rate is high with a low incidence of severe complications. The predictors of success are a larger balloon/waist ratio and the presence of therapeutic tears. The occurrence of restenosis during follow-up, however, remains a problem. A larger number of cases and longer periods of follow-up are needed for further study

    Persistent sulfate formation from London Fog to Chinese haze

    Get PDF
    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world

    Meritocracy-its place in Singapore society

    No full text
    Meritocracy has long been a pillar for Singapore society. In its quest to seek out the best and the brightest to lead the country, has it forgotten those who haven’t been able to keep up? In this four-part feature, we examine the conse-quences of being a meritocractic society.Bachelor of Communication Studie

    Diagnostic validity of MRI for central nervous system tuberculosis: protocol for a systematic review and meta-analysis

    No full text
    Introduction Central nervous system tuberculosis (CNSTB) is a severe condition, sometimes associated with a poor prognosis. Early diagnosis of CNSTB remains challenging, considering that conventional methods lack sensitivity or might lead to certain side effects. Herein, we presented a protocol for a systematic review and meta-analysis to assess the diagnostic efficacy of MRI for CNSTB.Methods and analysis SinoMed, Wanfang database, China National Knowledge Infrastructure, Embase, the Cochrane Library and PubMed will be searched to identify studies reporting on the use of MRI in the diagnosis of CNSTB from database inception to December 2023. The following keywords will be applied: ‘Intracranial tuberculosis’, ‘Cerebral tuberculosis’, ‘Central nervous system tuberculosis’, ‘Spinal tuberculous arachnoiditis’ and ‘Magnetic Resonance Imaging’. Studies that evaluate the diagnostic accuracy of MRI for the diagnosis of CNSTB and report clear reference criteria will be included. Studies from which full true positive, false positive, false negative and true negative values cannot be extracted, those published in languages other than English or Chinese, abstracts not reporting the full text, and case reports will be excluded. Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) will be used to evaluate the methodological quality of each included study. Stata V.15.0 and RevMan V.5.3 will be used to perform a meta-analysis and generate forest plots and summary receiver operating characteristic curves. In case of significant heterogeneity between studies, possible sources of heterogeneity will be explored through subgroup and meta-regression analyses.Ethics and dissemination This research is based on public databases and does not require ethical approval. Results will be submitted for publication in a peer-reviewed journal.PROSPERO registration number CRD42023415690
    • 

    corecore